
Emission-aware Energy Storage Scheduling for a
Greener Grid

Abstract—Reducing our reliance on carbon-intensive energy
sources is vital for reducing the carbon footprint of the electric
grid. Although the grid is seeing increasing deployments of
clean, renewable sources of energy, a significant portion of
the grid demand is still met using traditional carbon-intensive
energy sources. In this paper, we study the problem of using
energy storage deployed in the grid to reduce the grid’s carbon
emissions. While energy storage has previously been used for grid
optimizations such as peak shaving and smoothing intermittent
sources, our insight is to use distributed storage to enable
utilities to reduce their reliance on their less efficient and most
carbon-intensive power plants and thereby reduce their overall
emission footprint. We formulate the problem of emission-aware
scheduling of distributed energy storage as an optimization
problem, and use a robust optimization approach that is well-
suited for handling the uncertainty in load predictions and
intermittent renewables. We evaluate our approach using a state
of the art neural network load forecasting technique and real load
traces from a distribution grid. Our results show a reduction of
>0.5 million kg in annual carbon emissions — equivalent to a
drop of 23.3% in our electric grid emissions.

I. INTRODUCTION

A key sustainability goal of the UN is to attain a zero carbon
economy in order to tackle climate change, while maintaining
our current standards of living. Doing so involves immense
challenges, since it requires changing our energy consumption
behavior, while also transitioning the electric grid to carbon-
neutral or zero-carbon energy sources. Over the last decade,
there has been an increasing deployment of clean, renewable
energy sources such as solar and wind that are already
contributing positively to reducing the grid’s overall carbon
footprint. The levelized cost of these renewable technologies
is now on par or below traditional carbon-intensive generation
sources, and their carbon footprint is near zero.

However, due to their intermittent nature, the increasing
penetration of these energy sources has increased the stochas-
ticity and uncertainty in grid energy supply. Consequently,
energy storage has emerged as a related grid technology to
counter this stochasticity [1]. Energy storage batteries can act
as “energy buffers” that smooth out the intermittent supply
from renewable sources. The cost of energy storage has con-
tinued to fall, much like that of renewables, and their deploy-
ments have begun to increase. For instance, Green Mountain
Power, a small utility in Vermont, USA, now leases Powerwall
batteries to residential customers for just $15/month, while
allowing utility control of the battery during peak periods [2].
Such a distributed deployment of energy storage with utility
control forms a type of Virtual Power Plant (VPP) that the
utility can control for various grid optimizations.

Much of the recent work on energy storage-driven grid
optimization has focused on demand-side optimizations such
as cost arbitrage [3], peak load shaving, demand response [4],
and ancillary services [5]. Peak load shaving is a grid optimiza-
tion of particular interest to utilities and involves operating
batteries during peak demand periods in order to reduce the
grid stress and the reliance on peaking power plans that
are operated solely to meet peak load. Peak shaving brings
economic and cost benefits, since peaking power plants tend
to be less efficient and hence the cost of supplying electricity
during peak periods is much higher than at other times.

Although energy storage-based peak shaving has been stud-
ied from a cost reduction perspective, it also brings implicit
greening benefits—peaking power plants are not only less
efficient and costly to operate, they come with a high pollution
and carbon cost. Despite the implicit greening benefit from
reducing the use of peaking power plants, the problem of peak
load reduction using energy storage does not directly translate
to the problem of reducing the grid’s carbon footprint. This
is because not all peak demand is met using “dirty” peaking
power plants. In some cases, for instance, peak demand can
be met using pumped hydro storage, which is a clean energy
source, and operating energy storage batteries during such
periods will not yield any emission reductions.

Thus, reducing the grid’s carbon footprint can not be
achieved by naı̈vely using prior methods on energy storage-
based peak load reduction. This problem of emission reduc-
tions, a supply-side optimization, is not only different, but also
more challenging than peak load reduction. Since grid demand
is directly observable, energy storage can be activated when
peak demand occurs. Unlike grid demand, the grid’s carbon
emissions are not directly observable and must be inferred
through other means, which is a pre-requisite for scheduling
energy storage whenever the grid’s emission footprint peaks.

The use of energy storage for explicitly optimizing the
emission footprint of the grid has not been considered by prior
work, with the sole exception of [6], where it was considered
as part of a broader multi-objective optimization to reduce
cost, emissions, etc., and by only considering small residential
scale storage. Our work is more general since it addresses
grid-scale storage at various levels of the grid network, and
also more specific since it focuses on reducing emissions as a
primary objective. Our work is motivated by the observation
that a utility typically uses a mix of generation sources to fulfill
its daily demands. Different generation sources have different
cost and emission footprints—for example, while coal, oil
and natural gas have high emission footprints, sources such



as nuclear, hydro and solar have zero emissions. The cost of
generation also varies across these generation sources.

Utilities typically create a dispatch schedule that determines
the order in which different generation sources are utilized to
meet rising demand—more efficient energy sources are used
more often or as base sources, while less efficient ones are
often used only during high demand or peak demand periods.
Our insight is that these dispatch schedules and marginal
analysis of energy prices can be used to infer the carbon cost to
produce the next unit of electricity at a particular demand level.
Since demand is observable, we can combine this information
with time-varying demand to compute the overall emission
footprint at different points in the demand curve and then
intelligently activate energy storage whenever the emissions
footprint is high; as noted, the emissions footprint depends on
the energy fuel sources used and not on the demand, yielding
a different schedule for operating energy storage than that
from peak shaving. Such emission-aware scheduling of energy
storage can provide significant benefits in greening the grid.

However, there are many challenges in designing algorithms
for emission-aware scheduling of energy storage. First, the
daily electricity demand is stochastic and time-varying and
also depends on weather conditions. Second, as the penetration
of “clean” renewables increases in the grid, it results in lower
emission footprint for the generation mix but also increases
uncertainty in supply due to intermittency of generation. Third,
the emission footprint of various sources, represented by the
marginal cost of generation, is itself time-varying due to
changes in prices of inputs and other factors. Finally the energy
storage deployment will be distributed and heterogeneous
with batteries of various sizes and technologies deployed in
different parts of the grid.

In this paper, we leverage robust optimization [7], [8] (RO)
to tackle the uncertainty of the daily electricity demand.
Classic stochastic optimization approaches require stochastic
modeling of uncertain parameters, and deviations from the
models, may degrade the performance of the proposed solu-
tions substantially. In contrast, RO does not rely on an under-
lying probability distribution of the uncertain input, and only
requires a limited information of the uncertain data, including
mean, and interval predictions, i.e., upper and lower bounds of
the uncertain data. When compared to probability distributions,
mean and interval prediction values are much simpler to
estimate. In addition, RO always calculates a solution that is
guaranteed to be feasible within all possible realizations of
the uncertainty sets. Note that RO and competitive algorithm
design [9] are two approaches in the literature that do not
rely on any stochastic modeling of the uncertain data. While
a competitive approach is too conservative since it guarantees
worst-case performance, the additional interval prediction data
can result in better performance in RO. In designing and
evaluating our emission-aware storage scheduling approach,
our paper makes the following contributions.
Problem Formulation. We present a detailed formulation
of the problem of emission-aware storage scheduling as an
optimization problem. Our formulation is sufficiently general

to incorporate a range of possibilities, including heterogenous
storage deployments, distributed renewable generation, and
time-varying marginal costs.
Emission-aware distributed energy storage scheduling us-
ing robust optimization. We use robust optimization, a state
of the art stochastic optimization approach, to solve the
energy-aware storage scheduling problem. As noted above, the
use of robust optimization allows us to find a solution that is
guaranteed to be feasible within all the possible realizations
of the input in a predetermined uncertainty set.
Grid-scale evaluation. We present a grid-scale evaluation
of our approach using real traces from a distribution grid
comprising 100 transformers. Since our optimization approach
requires load predictions, we also use a state of the art
autoregressive neural network algorithm for transformer load
forecasting, which is then utilized by our optimization ap-
proach. Our results show carbon emissions savings of >0.5
million kg over a period of a year. This reduction is equivalent
to 23.3% of overall emissions from the electric grid. We also
show that even at 50% storage peneration level we can achieve
up to 13.87% reduction in carbon emissions.

II. BACKGROUND

In this section, we provide background on electric grids,
generation sources, and energy storage.

A. Electric grids

As is well known, today’s electric grids comprise three
components: generation, transmission, and distribution (see
Figure 1). A key goal of the grid operator is to ensure
that demand and supply are matched at all times for proper
functioning of the grid. Since electricity demand changes
continuously over the course of a day (see Figure 2(a)),
the generation must be matched to changing demand via a
dispatch schedule [10]. The dispatch schedule determines the
order and schedule for activating and deactivating various
generators that are at the disposal of the grid operator and
specifies how the supply should be ramped up or down to
match time-varying demand.

Typically, power plants and generators used for the dispatch
schedule fall into three categories: (i) Base load generators:
These are generators at power plants that operate at all times
to support the base demand; generators at large-scale power
plants such as nuclear, natural gas, coal, and biomass fall into
these categories; (ii) Load following generators: These are
generators that are activated during the high demand periods
within each day (such as morning and evening) to support
demand beyond the base load; (iii) Peaking generators: These
are standby generators that are activated when the overall
demand hits seasonal peaks. They may operate for only a few
days of the year when the hot or cold weather causes the
demand to peak for the season. In general, peaking generators
tend to be older, less-efficient generators within the overall
mix that are kept on standby for infrequent use; old coal
and oil generators that are nearing the end of their lifetime
are examples of peaking generators. Note that high or peak
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Fig. 1. Electric grid architecture comprising generation, transmission and distribution. Our work assumes a heterogenous energy storage within the distribution
grid.

demands can also be met through other means, such as pumped
hydro storage, and hence, the emission footprint may not
always rise with demand.

In contrast to traditional sources of electricity generation,
renewable sources such as solar, wind and hydro are non-
polluting in nature and have zero carbon emissions. Distributed
renewable energy sources such as solar tend to be part of the
distribution network and often net-meter their power output
directly into the distribution grid. Further, renewable sources
such solar and wind are assumed to be uncontrollable due to
their intermittent nature and thus not dispatchable.

B. Emission from generation sources

As discussed below, the carbon intensity, and the resulting
emission footprint, of the grid varies continuously over the
course of the day. If the emission footprint from generation
were directly observable, we could simply schedule energy
storage whenever emissions peak during each day. Since the
emission footprint is not directly observable, we need to infer
it through other means for our emission-aware scheduling
approach. Two factors need to be considered for doing so:
the average carbon intensity and marginal carbon intensity.

The average carbon intensity of an electric grid is defined as
the weighted average of emission factors of the available fuel
types, in which emission factor of each fuel type is defined
as its carbon emission by generating one unit of electricity.
Table I lists the values of emission factor for the available
generation types in ISO New England [11]. The average
carbon intensity is the weighted average of emission factors
for the energy mix used by the grid. For example, if an electric
grid produces electricity from coal, natural gas, nuclear, and
hydro in equal proportions, then the average carbon intensity
would be 339.49 kg/MWh (962.97× 0.25 + 395.53× 0.25 +
0× 0.25 + 0× 0.25), in the above example.

In general, however, the reduction or increase in generation,
and consequently, carbon emission, due to changes in electric
demand (dictated by the dispatch schedule) is not the same
across all power plants. Most of the changes occur in the
load following power plants, and occasionally in the peaker
power plans, which we collectively refer to as marginal
power plants. These are generators that can be ramped up
or down at short notice to respond to changes in demand
as determined by the dispatch schedule. Consequently, when

TABLE I
CARBON EMISSION BY DIFFERENT GENERATION TYPES, DATA PUBLICLY

AVAILABLE FROM [11]

Generation Type Emission Factor (CO2 kg/MWh)
Coal 962.97

Natural Gas 395.53
Oil 933.94

Nuclear 0
Hydro 0

Solar and Wind 0

attempting to reduce the emissions from the generation mix,
we must consider the marginal carbon intensity, which is
the emissions from generating the next unit of electricity;
in our case, it is related to the operation marginal power
plants. In the above example, if the marginal power plant uses
natural gas as fuel, the marginal carbon intensity is 395.5
kg/MWh, which is higher than the average carbon intensity
in our example. Since there are notable differences in the
emission factors associated with the different fuel types, there
is significant potential for reducing the carbon footprint of
the overall electricity generation by optimizing the marginal
carbon intensity through the use of energy storage.

It should also be noted that the marginal carbon intensity
will vary over time due to several factors. For example, if
the generation from hydro plants has to be decreased during
periods of little rain, generation from other (less green) sources
will have to make up the shortfall, potentially increasing the
marginal carbon intensity. Fuel prices of raw materials such
as natural gas and oil may fluctuate over time, and dispatch
schedules may be optimized to use cheaper sources. The
dispatch schedule itself varies over the course of a season
based on seasonal demand. All of these factors cause the
marginal carbon intensity to vary, and any approach that
seeks to optimize marginal emissions must account for such
temporal variations. Figure 2(b) illustrates the variations of the
marginal carbon intensities of different fuel types.

C. Energy Storage

Grid energy storage technologies in the form of batteries
have been gaining traction in recent years. Companies such as
Tesla have deployed both small- and large-scale energy storage
within the grid in many different countries and demonstrated
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Fig. 2. (a) Daily transformer load (b) Marginal factor of different fuels for a
day.

the feasibility and benefits of using such storage for grid
optimizations. This work assumes a distributed deployment
of energy storage batteries within the distribution grid. The
deployment is assumed to be heterogeneous — the sizes of
batteries and the level within the grid where they are deployed
are assumed to be different for different batteries. Some
batteries may be small batteries, akin to the Tesla Powerwall,
deployed adjacent to small neighborhood distribution trans-
formers. Other batteries may be larger in size and deployed
near larger transformers (potentially at the feeder or substation
levels) that supply electricity to a larger number of homes. The
penetration of energy storage within the distribution grid can
differ from one scenario to another, and our work is designed
to handle different penetration levels.

The distributed network of batteries is assumed to be under
the control of the grid operator. However, rather than using
them for grid optimizations, our work seeks to operate this
distributed set of batteries to minimize the aggregate carbon
emissions of the grid, given the time-varying marginal carbon
intensity values—by operating them to reduce reliance on the
dispatchable sources with high marginal carbon intensities.
We formulate this problem of emission-aware scheduling of
energy storage more formally in the next section.

III. PROBLEM FORMULATION

Consider a distribution grid comprising a network of sub-
stations, feeders and neighborhood transformers. Assume that
energy storage is deployed at various points within this grid,
i.e., at a subset of the transformers. In a typical grid, there
is significant variation in the capacity of transformers and the
number of customers it serves. Thus, the energy storage must
be sized according to the transformer capacity to enable grid
optimizations at that location. Further, our work assumes that
this heterogeneous collection of batteries is under the control
of the grid operator and the operator can control the charging
and discharging of a distributed network of batteries.

As discussed in the previous section, there are several
fuel types in a typical electric grid, each with a different
level of emission factor and different time-varying marginal
carbon intensity. The emission footprint of the grid at any
instant depends on the mix of generation fuels used to satisfy
the current demand. Grid operators must match supply and
demand at all times by constructing a dispatch schedule in

TABLE II
SUMMARY OF NOTATIONS

Inputs
T The number of time slots, T ≥ 1
T Set T = {1, 2, . . . , T}
n The number of transformers
m The number of fuel types
Ci The capacity of transformer i
Bi The capacity of storage system at transformer i
ρi Charge and discharge rate limit of storage system i
wf Emission factor of fuel type f
λf (t) marginal factor of fuel type f at t
li(t) Mean value of day-ahead forecast load at transformer i at t

Optimization variables
xi(t) The charge/discharge amount of storage i at t

x(t)
The aggregate charge/discharge at t, i.e.,
x(t) =

∑n
i=1 xi(t)

bi(t)
The storage level (state of charge) of storage i at the end
of t

advance. The dispatch schedule is typically computed a day
in advance by first estimating the demand curve for the
following day and then determining an order in which different
generation sources are activated (or deactivated) to meet the
predicted rise and fall in demand. This problem becomes
a cost minimization problem since the next unit of rise in
demand should be satisfied using the generation source with
the cheapest marginal price [10]. This problem is also referred
to as the unit commitment problem in power system literature
[12]; in solving this dispatch schedule (i.e., unit commitment),
time-varying marginal prices are computed at each step to
select the least cost source for each unit change in demand.
Since this problem is solved one day in advance (usually
through day-ahead energy markets), we assume that time-
varying marginal factors can be obtained when the dispatch
schedule is finalized at the start of each day.

The key insight behind our approach is to take the demand
seen within the distribution grid (which is directly observable)
and these computed marginal prices at different times of the
day to infer the emission footprint of the grid over time;
the scheduling problem is then to intelligently schedule the
batteries during peak emissions periods, subject to various
demand constraints within the distribution grid. This leads us
to the following problem: Given the dynamics in the marginal
factor of available fuel types and in the distribution-level
demand, what is the optimal scheduling of energy storage that
minimizes grid-wide carbon emissions and respects the oper-
ational constraints of the grid and energy storage systems?

A. System Model

In this section, we formulate the offline version of the
emission-aware storage scheduling problem (EASS) assuming
that the entire load data is available in advance, and in the
next section, we present the online formulation that takes into
account the uncertainty of load.

We assume that the time horizon is divided into T real-time
settlement intervals, indexed by t, each with fixed length. Time



slots are set according to the real-time settlement intervals in
the U.S.-based electricity markets, e.g., 5 minutes in CAISO
and NYISO, and 15 minutes in ERCOT [13]. The main
notations are summarized in Table II. In what follows, we
explain the details of the system model.

Assume there are n transformers in the system, each indexed
by i. Further assume that there is an energy storage battery
at each transformer. In practice, the operator may only deploy
energy storage at a subset of transformers, which can be easily
modeled by setting the sizes of batteries at all other transform-
ers to zero. The scheduling decisions are assumed to be made
at the transformer level. Let Ci be the capacity of transformer
i, and Bi be the storage capacity deployed at transformer i. Let
ρi be the maximum charging and discharging rate of storage i.
Our formulation could be extended to the case with different
charge and discharge rate constraints.

We assume there are m different fuel types in the grid, each
indexed by f . Let wf be the emission factor in kg/MWh of
fuel type f . Further, let λf (t) be the marginal factor, as the
contribution of fuel type f at time t to the marginal increase
or decrease in energy demand. The values of wf are fixed and
given in advance. The values of λf (t) change over time based
on solving grid dispatch and unit commitment problems.

Finally, let li(t) be the day-ahead load forecast of trans-
former i at time t. In addition, let l̂i(t) be the actual values of
load in real-time. Note that li(t) and l̂i(t) might be different
since there is always some error between the forecast day-
ahead and actual values. The problem formulation in this
section is an offline version that takes into account the day-
ahead load values. In Section IV, we extend the formulation
to include the uncertainty of actual load in real time.

B. Problem Formulation

a) The Optimization Variables: The charg-
ing/discharging amount of storage i at t is represented
as xi(t). Positive values, i.e., xi(t) > 0 indicate the charging
of the storage, whereas negative values, i.e., xi(t) < 0
indicate discharging. The aggregate change in load due to
charge/discharge of different storages observed at the grid
level at time t is represented by x(t), i.e., x(t) =

∑n
i=1 xi(t).

Finally, let si(t) be the state of charge of storage i at time t,
and we will obtain its evolution over time in the following
by formalizing the constraints.

b) Constraints: The change in load observed at the grid
level is the sum of all the charging/discharging decisions made
at each transformer, i.e.,

x(t) =

n∑
i=1

xi(t), ∀t, (1)

The evolution of storage is represented as the following
constraint

si(t+ 1) = si(t) + xi(t), ∀t and ∀i, (2)

The other constraints regarding the physical limit of storage
are presented as follows. The scheduling decisions should

be taken within the operating constraints of the battery. For
example, the maximum charge of the storage unit should
not exceed the storage capacity while it is in operation. For
simplicity, we assume the maximum charging and discharging
rate to be equal. We represent the constraints regarding the
state of the charge of storage as follows

si(t) ≤ Bi, ∀t and ∀i, (3)
si(t) ≥ 0, ∀t and ∀i, (4)
−ρi ≤ xi(t) ≤ ρi, ∀t and ∀i. (5)

In order to maintain the demand and supply relationship,
the discharge from the storage unit should not be greater than
the load observed at the transformer at any time t. Thus, we
have

−xi(t) ≤ li(t), ∀t and ∀i. (6)

Note that in reality, it is possible to have peak load beyond the
capacity of transformers. In case of the load at the transformer
at time t is greater than the capacity of the transformer, we
do not want to worsen the situation by charging the storage at
that time leading to transformer overload. Hence, by defining
parameter η as the threshold violation level of transformer
capacity, we express the this constraint as

Ci − x(t)− li(t) ≥ η, ∀i and ∀t. (7)

The value of η is set by the operator of the grid, and in
experiments we set it to 1% of the transformer capacity.

c) Objective Function: The eventual goal is to minimize
the carbon emission of the grid by managing the charging and
discharging of the energy storage. More specifically, we aim
to minimize the following objective function:

T∑
t=1

m∑
f=1

wfλf (t)x(t), (8)

where x(t) represents the aggregate change in load by schedul-
ing the storage observed at grid level as described in (1). Recall
that λf (t) represents the marginal factor of fuel type f at time
t, and wf is the emission factor of fuel type f .

d) Optimization Problem Formulation: Putting together,
we formulate the emission-aware energy storage scheduling
(EASS) problem as

EASS : min

T∑
t=1

m∑
f=1

wfλf (t)x(t)

subject to: Equations (1)− (7),
variable: xi(t) ∈ R, i ∈ {1, . . . , n}, t ∈ {1, . . . , T}.

The EASS problem is linear in nature that could be solved
optimally if the entire input to the problem, i.e., load values
and emission parameters, are given in advance. In practice,
however, these values are uncertain, and as we will show
in Section VI-A, future predictions of load are never 100%
accurate. Consequently, in the next section, we introduce the
robust optimization formulation to tackle the uncertainty that
arises when solving this problem online in real-world settings.



IV. ROBUST OPTIMIZATION APPROACH

In this section, we present the robust optimization version
of EASS (called EASS-RO) by taking into account the
uncertainty due to the imbalance between the forecast and
actual real-time load values. Robust Optimization (RO) [8] is
a well-established framework for general scenarios of decision
making under uncertainty. In this paper, we leverage the RO
framework for emission-aware storage scheduling under the
uncertainty of electricity load. As compared to the traditional
stochastic optimization approaches, problems formulated in an
RO framework are typically computationally tractable and do
not require the knowledge of a probability distribution over
the uncertain input.

The first challenge in formulating an RO counterpart of
EASS is to define an uncertainty set which bounds the
upper and lower bounds that the uncertain input, i.e., load,
can take. The classic approach in RO is to optimize for the
worst case value in the uncertainty set, but that might be too
conservative leading to a suboptimal solution. In this paper,
we follow another variant of RO framework, called the price
of robustness, proposed in [8]. More specifically, Bertsimas,
et. al. [8] develop a generic uncertainty set that can be used to
formulate a robust linear counterpart of an uncertain linear
program. In this approach, the level of robustness can be
controlled by parameter Γ known as the budget of uncertainty.
Then they proved that Γ can be chosen based on the level of
robustness desired by the operators such that the probability
that the constraint is satisfied is 1 − ε. In what follows, we
present the robust counterpart of the EASS problem using the
robust framework in [8],

a) Robust Counterparts of Uncertain Linear Constraints:
In this section, we present the robust counterparts of the
constraints that include load values.

First, we state the robust counterpart of constraint (6).
Recall that constraint (6) is enforced to ensure that discharge
from the battery should be less than the load observed at the
transformer. The detailed steps toward stating constraint (6)
in a robust framework is the following. First, we construct
the uncertainty set associated with the transformer level loads.
The uncertainty set for actual load of transformer i at time t
can be represented as

Li(t) = [li(t)− σi(t), li(t) + σi(t)], (9)

where σi(t) is the deviation from the expected value. The
values σi(t) and accordingly Li(t) should be obtained by using
a forecast model of the transformer level load. In Section V-A,
we present our forecasting approach based on state-of-the-art
neural networks for predicting the load. The values of σi(t)
will be used to construct the robust constraint.

By defining Γ as the budget of uncertainty [8], we re-express
constraint (6) as

−xi(t)− li(t) + βi(li(t),Γ) ≤ 0 ∀i and ∀t, (10)

where βi(li(t),Γ) represents deviation of li(t) from its ex-
pected value, given Γ as the budget of uncertainty. Note that

Γ could be readily extended to be defined for each transformer
separately. In the following, we explain how to calculate the
value of βi(li(t),Γ).

In the original robust optimization framework under the
paradigm of price of robustness [8], the budget of uncertainty
is defined for each uncertain constraint separately, and its goal
is to provide a trade-off between the robustness against the
performance of the solution. More specifically, the value of Γ
determines that for each constraint how many elements should
be robust against violation; the higher the value of Γ, the
higher the robustness, the lower the performance. In other
words, the solutions with the higher values of Γ might be
suboptimal since it is too conservative for the sake of ensuring
robustness.

Since constraint (7) is independent for each transformer
load at each time slot, following the original approach in [8]
requires us to have n × T separate values robust constraints
each for one instance of (6). This approach does not provide
any flexibility to determine the level of robustness and limits
us to the case with the maximum robustness in solution.
To provide flexibility for trade-off between robustness and
performance, we slightly change the original framework by
considering a common budget of uncertainty for the entire time
horizon of each transformer, i.e., grouping all the constraints
of each transformer over time.

More specifically, let z? = [z?i (t)]t∈{1,2,...,T} be the optimal
value of the following optimization problem [8, Section 3,
Proposition 1]:

z? = arg max
zi(t)∈[0,1]

T∑
t=1

σi(t)zi(t), s.t.
T∑

t=1

zi(t) ≤ Γ. (11)

Note that the above problem should be solved for each
transformer i separately. Then, we calculate the values of each
βi(li(t),Γ) as follows:

βi(li(t),Γ) = σi(t)z
?
i (t).

Using this formulation one can see that βi(li(t),Γ) ranges
between [0, σi(t)], thus li(t) ranges between [0, li(t) + σi(t)].
We can safely ignore the set [li(t)−σi(t), li(t)] as we want to
make our solution robust to the worst case scenario. Using the
budget of uncertainty parameter Γ we can control the level of
robustness across time in terms of the following optimization
problem.

Intuitively, we can see how the value of Γ controls the
deviation from li(t). In case we set Γ = 0 the EASS-RO
problem reduces to EASS as all the deviations from li(t) will
be 0. On the other hand, increasing Γ increases the deviation of
li(t) thereby we have more robustness in the solution. When
Γ = |T | each zi(t) will be set to 1, thus EASS-RO is the
most conservative formulation. Last, in EASS, constraint (7)
is involved with the uncertainty of the load. Hence, the same
procedure as for constraint (6) should be done to have its
robust counterpart.



V. EVALUATION SETUP

In this section, we discuss our experimental setup and
methodology.

A. Load forecasting

Our approach requires load forecast as input and internally
deals with its uncertainty. While there are have been several
research on forecasting demand [14], most approaches focus
on predicting the aggregate grid demand, which is often
smooth and predictable. However, transformer load sees higher
variations depending on the number of homes the transformers
feed electricity [15]. As such, it is more challenging to provide
accurate forecasts and has higher uncertainty in prediction.
Formally, forecasting transformer loads requires learning a
function Fi that predicts future loads based on input parame-
ters stated as follows

li(t+ 1, t+ 2, . . . , t+ k) = Fi(li(1, 2, . . . , t), τ) ∀i.

where Fi predicts future load for the next k time steps, and
τ is a vector that represents exogenous feature inputs such as
temperature, day of the week.

Load at the transformer level show both diurnal and weekly
patterns [15]. For example, load during mid-day will differ
from load seen at night. Similarly, weekday load differs from
weekend load patterns. We use this insights to model our
load. Specifically, our approach is based on an Autoregressive
Neural Network [16]. To forecast load for time t+1, in addition
to temperature and day of the week, we use past m loads seen
at previous time slot, previous day load at time t + 1, and
previous week load at time t + 1 as input features. We also
use one-hot encoding to capture the day of the week in the
input feature vector.

B. Experimental Datasets

a) Load Dataset: For evaluating the efficacy of our
load forecasting techniques along with the distributed storage
schedule, we use a grid-scale dataset obtained from an utility
company in the Northeastern US containing energy data from
1,341 smart meters connected to 100 transformer. This data is
available at a 5-minute granularity over a period of 2 years. On
an average, each transformer is connected to 13.4 smart meters
(ranging from 5 to 85). Likewise, the transformer capacity
varies between 25 and 750 kVA.

b) Marginal Carbon Intensity: Additionally, our schedul-
ing scheme requires marginal carbon intensity as the input to
the problem. This data is not directly available for the New
England region. Hence, we use the method specified in [17]
that estimates the marginal power plants in operation using
the hourly locational marginal price (LMP) of electricity gen-
eration and the monthly fuel prices available through [18] and
[19]. The approach uses a symmetric Gaussian membership
function in (12) that maps the LMP values to fuel types.

Mf (t) = e

−(p(t)−µf )2

2ν2
f (12)

TABLE III
PARAMETER SETTINGS OF OUR APPROACH.

Parameters Value
Charge/Discharge Rate Limit 60 mins
Marginal Fuel Sources Coal, Oil, Gas
Emission Factor (kg/MWh) Refer to Table 1
η in Equation (7) 1% of Ci

Γ in EASS-RO [10,20]

where µf and ν2f is the average cost and variance of fuel type
f , and p(t) is LMP of the market at time t. Subsequently, we
compute the marginal factor λf (t) of fuel type f as follows.

λf (t) =
Mf (t)∑
f Mf (t)

(13)

C. Experimental Settings and Baseline

a) Parameter Settings: We set the time horizon to one
day, and the length of each slot is 5 minutes, hence T =
12× 24 = 288. We initialize the storage level at half its total
capacity to allow both charging and discharging starting with
time t = 0. We also constrain the storage capacity at the end
of the day to half its capacity so as to have the same state of
charge for the next day, i.e.,

si(t) =
Bi

2
; if t = 1 and t = T = 288,∀i.

While evaluating our robust approach, we use load val-
ues and fuel type parameters directly read from the dataset
described above. The additional parameters are described in
Table III.

1) Baseline Algorithms: We compare the performance of
EASS-RO with the following approaches.

1) Optimal Offline Solution: The optimal offline approach
assumes complete knowledge of future load and pro-
vides the best achievable schedule to minimize carbon
emissions. Although not practical, it serves as a best
theoretical upper bound to compare with.

2) Online Linear Programming: In this approach, we use
the day-ahead forecast load as input to solve the linear
program EASS and determine the schedule. However,
the day-ahead charge/discharge schedule may violate
real-time grid constraints as the actual load at time t
may differ from predicted load at time t. To ensure that
all grid constraints are satisfied, the day-ahead schedule
is adjusted as follows. Let l̂i(t) be the actual load
observed at time t, and x̂i(t) be the modified storage
charge/discharge value at t to ensure feasibility.
Transformer Constraints

x̂i(t) = 0, if Ci − xi(t)− l̂i(t) ≤ η (14)

x̂i(t) = Ci − l̂i(t), if xi(t) ≥ Ci − l̂i(t) (15)

Storage Constraints

x̂i(t) = Bi − si(t), if xi(t) + si(t) ≥ Bi (16)

x̂i(t) = −si(t), if xi(t) + si(t) ≤ 0 (17)
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Fig. 3. Efficacy of load forecasting methods. The figure shows there can be
significant uncertainty in forecasts.

As indicated earlier, we would like to avoid excessive
storage discharging during low energy demand periods.
This constraints is represented as:

x̂i(t) = −l̂i(t), if l̂i(t) ≤ −xi(t). (18)

3) The PreDay Algorithm: This approach uses the previous
day’s load and emissions factor as input to the linear
program to determine the emission-aware schedule. We
use a similar approach and modify the schedule as above
to ensure that constraints are not violated.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate our approach and compare it to
the optimal approach and other heuristic approaches.

A. Load Forecasting Uncertainty

First, we evaluate the efficacy and accuracy of our proposed
load forecasting method in Section V-A. We compare our
forecasting method based on state-of-the-art neural network
approach with two popular statistical time series techniques
— ARIMA [20] and TBATS [21]. Figure 3 compares the
performance of the proposed regression technique with the
two baseline approaches. The results show the distribution
of mean absolute percentage error (MAPE) values for load
forecast at all transformers evaluated over a period of one
year. Based on our analysis, TBATS has the highest average
MAPE of 34.17%, while the MAPE of ARIMA was 21.5%.
The performance of the autoregressive neural network with
exogenous variables outperformed all other techniques and
has the lowest average MAPE value of 20.14%. In our
experiments, we observed that including exogenous variables
improves the accuracy of our forecast significantly. Despite
its higher accuracy, we observe that the forecast still contains
error — indicating uncertainty in prediction. The presence of
such error is a motivation for leveraging robust optimization
for emission-aware storage scheduling.

B. Emission-aware Storage Schedule

Figure 4 depicts our emission-aware storage scheduling
approach in action. The figure shows the impact of the
storage schedule on the load observed at a transformer for
a sample day overlayed with the local demand. As shown,
discharging action occurs when the marginal emissions are
high, e.g., between 6 am to 9 am, which represents the high
polluting hours of the day. Conversely, charging occurs when
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Fig. 4. Battery charge and discharge based on our emission-aware energy
schedule. Our emission-aware algorithm discharges battery when marginal
carbon intensity (MCI) is high.
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Fig. 5. Carbon emissions reduction for different battery sizes. The battery
size is computed as the number of hours it can sustain the maximum load of
the transformer.

the marginal emissions are low, usually between 1 to 4 pm.
Based on the overall energy usage and the mix of fuels used
at different times of the day, the alternating charging and
discharging actions at this transformer mitigates 17.5 kg of
carbon emissions. Thus, emissions-aware distributed energy
storage has significant potential to reduce carbon emissions at
the grid-scale.

C. Benefits of Emission-aware Scheduling

We analyze the change in carbon savings1 by varying the
size of the energy storage. We size the battery as the number
of hours it can support the annual maximum load of the
transformer. Thus, one hour of battery capacity indicates that
it can support the maximum load of the transformer for an
hour. Figure 5 shows the reduction in carbon emissions with
increasing battery size for different algorithms. We observe
that the carbon emissions reduces with increasing battery
size. This is because a larger battery has more flexibility in
shifting transformer load, where batteries can charge during
lower emissions and discharge during high carbon emissions
period. Even with a battery size of 0.5 hours, we observe
that our emissions-aware algorithm achieves 10.16% reduction
in carbon emissions. Further, a battery size of 1.5 hours

1We use marginal carbon intensity and change in battery state compared to
the previous day to calculate the daily carbon savings.
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Fig. 6. Carbon emissions reduction for different charge/discharge rate and a
battery size of one hour.

can annually save >0.5 million kg of carbon emissions —
equivalent to a reduction of 23.3% in electric grid emissions.

We also compare our robust optimization with baseline
approaches described in Section V-C1. The optimal approach
provides the maximum carbon savings that can be achieved.
However, the optimal needs the full information in advance
that is not practical. We observe the gap between the optimal
and our robust optimization approach is less than 1.2% having
battery size less than or equal to one hour. Further, we note
that robust optimization consistently performs better than the
other baseline approaches.

D. Impact of Storage Parameters

So far, we have assumed that the energy storage can
discharge at the maximum load of the transformer, i.e., no
charge/discharge rate limit. Next, we study the effects of
different rate limits on carbon emission reduction as shown in
Figure 6. We fix the energy storage size such that it can sustain
the maximum load at the transformer for one hour and vary
the charge/discharge rate. The charge/discharge rate is set such
that the fraction indicates the percentage of the maximum load
at the transformer the energy storage can charge or discharge.
Thus, a 0.25 hour charge/discharge rate can discharge at one-
fourth the maximum load at the transformer. As seen in the
figure, with a charge/discharge rate of 0.25 hour, our robust
optimization approach achieves a carbon emission reduction of
13.9%. However, an increase in charge/discharge rate further
reduces carbon emissions. This is because a higher discharge
rate is able to reduce demands thereby minimizing the need
to utilize generation sources with high emission footprints. In
particular, we observe that the reduction in carbon emissions
increases by 37.2% (from 13.93% to 19.12%) when the rate
is increased from 0.25 to 1 hour.

E. Impact of Storage Penetration

We study the benefit that comes from installing energy
storage at only a fraction of the transformers in the grid. Like
before, in this experiment, we fix the energy storage size such
that it can sustain the transformer load at its maximum for
one hour and select transformers at random, where batteries
are installed. Figure 7 shows the reduction in carbon emissions
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Fig. 7. Carbon emissions reduction for different levels of storage penetration
across transformers. A 50% penetration indicate half the transformers have
storage units installed.

for different storage penetration levels. An energy storage pen-
etration of 25% can achieve 8.5% carbon emission reduction.
However, if 50% of the transformers install energy storage,
the carbon emission reductions improves to 13.9%, a 63.5%
improvement in emissions reduction. This is because higher
energy storage penetration can offset more loads that have
high emissions footprint. Further, if all the transformers have
energy storage, the reduction in carbon emission is 19.12%.

VII. RELATED WORK

Energy Storage Systems in the Electric Grid. There has
been significant work on using energy storage in the electric
grid [22], [23]. However, the majority of work has focused on
improving grid stability or cost arbitrage. This paper focuses
on using energy storage to reduce carbon emissions of the
grid by shifting the demand from high polluting periods to
low polluting periods.

Additionally, shifting the energy demand has been suggested
in the literature by introducing flexibility in loads through
a mechanism called demand response [24], [25]. Monetary
incentives are set aside to compensate for the customers
participating in demand response. However, demand response
involves customer buy-in and often include installing special-
ized hardware on the electric loads, which may not always
be feasible. On the contrary, grid operators around the world
can readily employ our approach by utilizing carbon intensity
values from the set of power plants they control.

Load Forecasting. In smart grids research, load forecast-
ing is a widely studied problem. The regression techniques
used to solve this problem range from traditional time series
approaches such as ARIMA [26] to neural network [27].
Traditionally, grid-level load forecasting was used to assess
power systems security, schedule maintenance services, etc.
Our regression model produces forecasts at the transformer-
level and improves over the state-of-the-art technique [27].

Robust Optimization for Scheduling in Smart Grid. Robust
optimization has been extensively used to solve different
problems in different application domains that deal with un-
certainty, including smart grid. Some examples are generator
placement [28], [29], EV charging scheduling [30], storage



sizing [31]. As compared to the other stochastic approaches
it has several advantages: (1) it does not require stochastic
modeling of uncertain parameters in terms of probability distri-
bution functions; (2) by defining the notion of budget of uncer-
tainty [8], its provides a design space to trade-off between the
robustness and performance of the decision making. Note that
the notion of uncertainty set has been used in other theoretical
approaches such as competitive analysis [32], however, the
algorithm approach used in [32] is problem specific and cannot
be applied to the emission-aware scheduling scenario in this
paper.

VIII. CONCLUSION

The benefits of distributed energy storage have been pre-
viously studied for grid optimizations such as peak shaving,
price arbitrage, and demand-response. However, in this work,
we focus on using distributed energy storage to reduce the
emission footprint of electricity generation. Our main insight
is that energy storage can help utility companies reduce the
reliance on less efficient and most carbon-intensive power
plants, shifting electric demand from high polluting periods to
low polluting periods. We formulated the problem of emission-
aware scheduling as an optimization problem with the objec-
tive of minimizing the carbon emission, subject to transformer
and storage operational constraints. Given the dynamics in
transformer-level load, we leveraged robust optimization to
handle the uncertainty in load predictions. We evaluated
our emission-aware energy storage scheduling approach on a
dataset containing 100 transformers connected to over 1,340
electric meters in a city in the Northeastern part of the US.
Our analysis showed that our approach can offset >0.5 million
kg in annual carbon emissions, which is equivalent to a 23.3%
reduction in the electric grid emissions.
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