

Emissions Aware Distributed Storage Scheduling

Rishikesh Jha

Advised by: Srinivasan Iyengar & Prashant Shenoy University of Massachusetts, Amherst

Motivation: Enabling Greener Grid Operations

- Grid Operations -> Supply-Demand balance
 - Diverse Fuel Mix: Varying operating constraints, greenhouse emissions, prices
 - Smart Grid: Distributed storage for grid resilience

Can we use energy storage to make a greener grid?

UMassAmhers

Problem Formulation

- Problem: Distributed Scheduling of storage to reduce carbon emissions
- Algorithm:
 - Load forecasting: Use Historical Transformer Level load data to forecast the future
 - Storage Scheduling: Optimal scheduling of storage to minimize carbon emissions

Algorithm – Predicting Transformer-level Energy Usage (1)

Historical Usage

UMassAmherst

Algorithm – Scheduling storage charge/discharge (2)

• Prepared a linear programming formulation for scheduling storage

• Objective: Minimize Carbon Emissions

- Constraints:
 - Energy balance
 - Grid Constraints: Transformer flow etc.
 - Battery Constraints: Amount of Discharge, Capacity, Rate of Charging/Discharging

Evaluation Methodology

- Dataset: City-wide utility dataset from the New England region
 - Overall 10263 smart meter measuring electricity usage
 - Overall 1050 transformers serving these meters

- Regression:
 - Baseline Techniques ARIMA, TBATS
 - State-of-the-art Techniques Per-time LSTM, Dual Attention LSTM, Seasonal LSTM
 - Our Technique Autoregressive Neural Network with Exogenous Variables
 - Train:Test split 1 year : 1 year (Sliding Evaluation)
 - Granularity 5 minute (288 values in a day)

Comparison of Regression Techniques

Related Work

- Modeling grid energy consumption:
 - Lee et al. (ACM eEnergy 2017), Iyengar et al. (ACM SIGKDD 2018), Richardson et al. (Elsevier Renewable and Sustainable Energy Reviews 2013), Veit (ACM eEnergy 2014)
- Past work focussed on predicting prices:
 - Bunn et al. (Proceedings of the IEEE 2000), Conejo et al. (IEEE Power Systems 2005), Sahay et. al. (IEEE INDICON 2013)
 - We converted predicting prices (2nd Order Chaos) to fuel mix (1st Order Chaos)
- Use of energy storage
 - Lawder et al. (IEEE Volume 102 2014), Koutsopoulos et al. (ACM eEnergy 2011)
 - We used a distributed battery storage scenario

Conclusion: Current status and deliverables

- Completed
 - Improved the state-of-the-art energy load prediction (regression)
 - Prepared linear programming-based formulation for energy storage operations

- To do
 - Evaluate the performance of the linear programming formulation
 - Preparing a stochastic optimization-based formulation for energy storage

- Final deliverable
 - Submit the work to a conference/workshop

A Charge in Time Saves Nine: Case for greenhouse emissions-aware energy usage

Rishikesh Jha

University of Massachusetts, Amherst

